Statistical Review and Design of Pilot Studies

Hae Kyung Im Kristen Wroblewski

Outline

- Definition of pilot studies
- · Reasons to conduct a pilot study
- Reviewer's checklist
- Example
- On using pilot data for sample size calculation
- · Internal vs. external pilots

Pilot Study Abuses

- · Term is overused
- Studies that look at feasibility and those that do hypothesis-testing on a small group of subjects are lumped together and labeled pilot studies
- <u>Pilot</u> and Collaborative Translational and Clinical Studies funding as part of the CTSA

Small Exploratory Study

- These types tend to be labeled as pilot studies and researchers claim there is no need for sample size justification
- The goals go beyond testing feasibility
 - Hypothesis generating study
 - No need to assess power
 - A few subjects should suffice (even n=1)
 - Hypothesis testing study
 - Only large effect sizes will be detected
 - Analysis of power and sample size is needed

(What is a pilot study, Paul Stewart)

Pilot Study

- A small investigation to test the feasibility of procedures and to gather information prior to a larger study
 - Designed to assess whether study is worth pursuing and what changes need to be made

Reasons for conducting pilot studies

- Study administration
- · Resources and data management
- Scientific

(Thabane et al. 2010 BMC Medical Research Methodology)

Study Administration Reasons

- · Recruitment, refusal, and retention rates
- Compliance/adherence rates
- Are eligibility criteria clear and reasonable?
- · Are study questionnaires well understood?
- · Are instructions to investigators clear?

(Thabane et al. 2010 BMC Medical Research Methodology)

Resource and Data Management Reasons

- Are all study sites willing and capable of carrying out the study?
- Are there sufficient resources dedicated to patient and data management?
- Can data from different sources be merged successfully?
- Are all important variables being collected?

(Thabane et al. 2010 BMC Medical Research Methodology)

Scientific Reasons

- How much variability is there in the outcome(s)? What is the effect size?
- Choosing between multiple outcome measures based on reliability/feasibility
- · Are assay methods appropriate?

(Thabane et al. 2010 BMC Medical Research Methodology)

A pilot study is NOT...

An excuse to use a small number of patients and not consult with a statistician due to limited funds or time

Checklist for reviewers (and investigators) Part 1

First, determine whether it's truly a pilot study:

- At least one of the reasons (study administration, data management, scientific) should apply.
- No hypothesis should be tested.

(What is a pilot study, Paul Stewart)

Checklist for reviewers (and investigators) Part 2

- Are aims and objectives clearly stated?
- Is the sample size justified?
- Have they addressed how the data collected will be used in the design of a larger study?
- Will this study answer the question of whether a full scale trial/experiment is worth pursuing?
- Are there clear criteria that will lead to the decision of pursuing a larger study?

(What is a pilot study, Paul Stewart)

Example

• Prior to a larger clinical trial, a pilot study involving 10 patients is proposed. The goal of the project is to investigate how well patients will tolerate wearing a new ambulatory heart monitor while receiving an experimental medication. Data will be downloaded from the monitors and will be analyzed using a t-test procedure for comparison of post-treatment heart rate to pre-treatment heart rate.

(What is a pilot study, Paul Stewart)

Example

- Main goal was to assess tolerability but there is no measure defined for it. No data to address the main goal is collected.
- · There is an implicit hypothesis tested.
- · Sample size is not justified and may be driven by the desire to detect a difference.

(What is a pilot study, Paul Stewart)

Use of pilot study for sample size determination

- · Sample variance from a pilot study is positively skewed
- So more than 50% of the time the sample variance will be lower than the true variance
- How often does the calculated power reach or exceed the actual power?
 - Using sample variance
 - Using 100(1-γ) percent upper one-sided confidence

(Browne R, 1995 Statistics in Medicine)

Let
$$X_i$$
 $i=1,2,...,n$ $X_i \sim N(\mu,\sigma^2)$
$$H_o: \mu=\mu_o \qquad \qquad H_1: \mu=\mu_1>\mu_0$$

$$t(\delta u) = \sqrt{p}(\bar{x} - u)/\sigma$$
 noncentral to

$$t(\delta,
u) = \sqrt{n}(ar{x} - \mu_o)/\sigma$$
 noncentral $t_{\delta,
u}$

$$\delta = \sqrt{n}(\mu_1 - \mu_o)/\sigma$$

$$P(t(\delta,\nu) \geq t_{1-\alpha,\nu}) \geq 1-\beta$$

 σ is unknown

$$S_m = \;\; {
m sample} \;\; {
m variance} \qquad {
m or} \qquad S_m {m-1 \over \chi^2_{m-1,1-\gamma}} = \; 1 - \gamma \;\; {
m UCL}$$

How often do we achieve the planned power?

Effect size*	Pilot sample size	Estimator of σ used in sample size determination					
		Pilot sample standard deviation	50% UCL† on σ	60% UCL† on σ	70% UCL† on σ	80% UCL† on σ	90% UCL on σ
0-10	5	0.39	0.50	0.60	0.70	0.80	0-90
0-10	10	0-43	0.50	0.60	0-71	0.80	0-91
0-10	30	0.48	0.51	0-61	0-71	0.82	0-91
0-10	50	0-48	0.51	0-62	0.71	0.81	0.90
0-10	100	0.50	0-52	0-61	0.71	0.82	0.92
0-40	5	0.43	0-51	0-61	0.70	0.79	0.89
0.40	10	0.48	0.54	0-65	0.76	0.84	0-93
0.40	30	0.54	0-57	0-66	0.76	0.83	0.92
0.40	50	0-56	0.58	0-67	0.75	0.84	0.92
0.40	100	0.61	0.56	0.72	0.81	0.89	0.95
0.75	5	0.52	0-60	0-69	0.78	0.87	0.94
0.75	10	0-62	0.66	0.74	0.83	0.88	0.95
0-75	30	0.75	0.75	0.83	0.88	0.93	0-98
0-75	50	0.83	0.82	0.87	0.93	0.94	0.99
0.75	100	0.91	0-90	0.92	0.95	0.95	1.00

Types of Pilot Studies

- External
 - Distinct from larger study
 - Test of feasibility
 - Small sample
- Internal
 - Two-stage design with first stage deemed pilot phase
 - Permits refinement of parameters used in initial study design by re-estimating at end of first stage
 - Larger sample size with little increase in cost/time

Sample size for internal pilots

- Variety of methods (Stein 1945, Wittes and Brittain 1990, Gould and Shih 1992)
- These methods behave similarly when the interim sample size is large (greater than 40)
- Uncertainty on how to choose fraction of patients used in first, pilot phase

(Zucker et al. 1999 Statistics in Medicine)

Wittes-Brittain Method

- Estimate the sample size per group, n, as usual using preliminary estimate of variance, τ^2 .
- Select proportion, *p*, so the first *pn* in each group comprise the pilot phase.
- Estimate variance, s^2 , after pilot phase is complete.
- If $s^2 \le \tau^2$, then continue as planned. Otherwise, adjust the sample size using s^2
- Inflation of true α-level will be small in most cases
 (Wittes et al. 1990 Statistics in Medicine)

Summary

- Pilot studies (feasibility) vs. small exploratory studies (hypothesis generation or testing)
- · Checklist for statistical review
- Sample variance vs. upper confidence limits
- · Internal vs. external

References

- Lancaster et al. (2004) Design and analysis of pilot studies: recommendations for good practice Journal of Evaluation in Clinical Practice 10:2, 307-12.
- Thabane et al. (2010) A tutorial on pilot studies: the what, why and how BMC Medical Research Methodology 10:1
- Wittes J and E Brittain (1990) The role of Internal Pilot Studies in Increasing the Efficiency of Clinical Trials Statistics in Medicine 9, 65-72.

References (continued)

- Zucker et al. (1999) *Internal Pilot Studies II: Comparison of various procedures* Statistics in Medicine 18, 3493-2509.
- Browne RH (1995) On the use of a pilot sample for sample size determination Statistics in Medicine 14, 1933-40.
- Stewart PW, "What is a Pilot Study?"
 http://www.incinnatichildrens.org/research/cores/gerc/protocols/Small_or_Pilot_Studies.htm

Questions?